翻訳と辞書
Words near each other
・ Chevalier Medal for Oriental Art
・ Chevalier Michael
・ Chevalier O'Gorman
・ Chevalier Paul
・ Chevalier Saint-George
・ Chevalier Sivaji Ganesan Award for Excellence in Indian Cinema
・ Chevalier-Montrachet
・ Chevalierella
・ Chevalierella elaeidis
・ Chevaline
・ Chevaline (disambiguation)
・ Chevaline Re-entry Body
・ Chevaline, Haute-Savoie
・ Chevallet fracture
・ Chevalley basis
Chevalley scheme
・ Chevalley theorem
・ Chevalley's structure theorem
・ Chevalley–Iwahori–Nagata theorem
・ Chevalley–Shephard–Todd theorem
・ Chevalley–Warning theorem
・ Chevallier
・ Chevallier (crater)
・ Chevalliers of Aspall Hall
・ Chevallum, Queensland
・ Chevanceaux
・ Chevandré van Schoor
・ Chevani
・ Chevannay
・ Chevannes


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Chevalley scheme : ウィキペディア英語版
Chevalley scheme
A Chevalley scheme in algebraic geometry was a precursor notion of scheme theory.
Let ''X'' be a separated integral noetherian scheme, ''R'' its function field. If we denote by X' the set of subrings \mathcal O_x of ''R'', where ''x'' runs through ''X'' (when X=\mathrm(A), we denote X' by L(A)), X' verifies the following three properties
* For each M\in X' , ''R'' is the field of fractions of ''M''.
* There is a finite set of noetherian subrings A_i of ''R'' so that X'=\cup_i L(A_i) and that, for each pair of indices ''i,j'', the subring A_ of ''R'' generated by A_i \cup A_j is an A_i-algebra of finite type.
* If M\subseteq N in X' are such that the maximal ideal of ''M'' is contained in that of ''N'', then ''M=N''.
Originally, Chevalley also supposed that R was an extension of finite type of a field K and that the A_i 's were algebras of finite type over a field too (this simplifies the second condition above).
==Bibliography==

* (Online )

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Chevalley scheme」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.